
Stephen Checkoway

Programming Abstractions
Week 13-1: Streams

Announcements

Course evals are available

‣ If at least 90% of the class writes an eval, everyone gets extra credit

Last homework is due on Tuesday, August 24 at 23:59

Final exam is optional

‣ You can take the final exam which will be similar to the midterms but without

extra credit; or

‣ You can take the average (arithmetic mean) score of exams 1 and 2 with a

maximum of 100%

‣ Either way, the final cannot push you over 100% in the course

‣ All exams contribute the same amount to your final grade

Review of delay and force

(delay exp) creates a promise which when forced evaluates exp and returns

the value

(force p) forces the promise p to obtain a value; if the promise's exp has not

been evaluated yet, it is evaluated and cached; otherwise the cached value is

returned

What is printed by this code?

(let* ([x 10]

 [y x])

 (set! x 20)

 (displayln y))

A. 10

B. 20

C. It's an error

4

What is printed by this code?

(let* ([x 10]

 [y (delay x)])

 (set! x 20)

 (displayln (force y)))

A. 10

B. 20

C. It's an error

5

What is printed by this code?

(let* ([x 10]

 [y (delay x)])

 (set! x 20)

 (displayln (force y))

 (set! x 30)

 (displayln (force y)))

A. 20 

20

B. 20 

30

C. 30 

30

D. It's an error

6

Last time: infinite list of primes

First, we need to think about how we want to represent this

Let's use a cons cell where

‣ the car is a prime; and

‣ the cdr is a promise which will return the next cons cell

2 #<promise>

3 #<promise>

5 #<promise>

force

force

An infinite list is an instance of a stream

A stream is a (possibly infinite) sequence of elements

A list is a valid, finite stream

‣ (stream? '(1 2 3)) => #t

Infinite streams must be built lazily out of promises (using delay internally)

Accessing elements of a stream forces their evaluation

Let's build a stream

As with our infinite list of primes we'll use a cons-cell holding a value and a

promise

API

‣ (stream-cons head tail)

‣ (stream-first s)

‣ (stream-rest s)

‣ (stream-empty? s)

‣ empty-stream

Constructing a lazy stream
(stream-cons head tail)

We can't use a procedure because it'll evaluate head and tail

(define-syntax stream-cons

 (syntax-rules ()

 [(_ head tail) (delay (cons head (delay tail)))]))

stream-cons returns a promise which when forced gives a cons cell where

the second element is a promise

Accessing the stream
(stream-first s) (stream-rest s)

s is either a promise or a cons cell so we need to check which

(define (stream-first s)

 (if (promise? s)

 (stream-first (force s))

 (car s)))

(define (stream-rest s)

 (if (promise? s)

 (stream-rest (force s))

 (cdr s)))

We can't use first and rest because those check if their arguments are lists

Checking if a stream is empty

(define empty-stream null)

(define (stream-empty? s)

 (if (promise? s)

 (stream-empty? (force s))

 (null? s)))

Constructing an infinite stream

Write a procedure which

‣ returns a stream constructed via stream-cons

‣ where the tail of the stream is a recursive call to the procedure

Call the procedure with the initial argument

(define (integers-from n)

 (stream-cons n (integers-from (add1 n))))

(define positive-integers (integers-from 0))

Accessing the elements

We can use stream-first and stream-rest to iterate through the elements

(define (stream-ref s idx)

 (cond [(zero? idx) (stream-first s)]

 [else (stream-ref (stream-rest s) (sub1 idx))]))

What does this print?

(define (evens-from n)

 (stream-cons (printf "evaluated ~v\n" n)

 (evens-from (+ n 2))))

(define evens (evens-from 0))

(stream-ref evens 10)

(stream-ref evens 11)

(stream-ref evens 10)

A. evaluated 10  
evaluated 11  
evaluated 10

B. evaluated 10  
evaluated 11

C. evaluated 20  
evaluated 22  
evaluated 20

D. evaluated 20  
evaluated 22

15

Primes as a stream

(define (prime? n) …) ; Same as last time

(define (next-prime n)

 (cond [(prime? n) (stream-cons n (next-prime (+ n 2)))]

 [else (next-prime (+ n 2))]))

(define (primes)

 (stream-cons 2 (next-prime 3)))

Fibonacci numbers as a stream

Recall the Fibonacci numbers are defined by f0 = 0, f1 = 1 and fn = fn-1 + fn-2

(define (next-fib m n)

 (stream-cons m (next-fib n (+ m n))))

(define fibs (next-fib 0 1))

Building streams from streams

Let's write a procedure to add two streams together

‣ Use stream-cons to construct the new stream

‣ Use stream-first on each stream to get the heads

‣ Recurse on the tails via stream-rest

(define (stream-add s t)

 (cond [(stream-empty? s) empty-stream]

 [(stream-empty? t) empty-stream]

 [else

 (stream-cons (+ (stream-first s)

 (stream-first t))

 (stream-add (stream-rest s)

 (stream-rest t)))]))

Fibonacci numbers as a stream: take 2

f0 = 0, f1 = 1 and fn = fn-1 + fn-2

We can build our Fibonacci sequence directly from that definition (this is silly)

(define fibs

 (stream-cons

 0

 (stream-cons

 1

 (stream-add fibs (stream-rest fibs)))))

Streams in Racket

These are already built-in so we don't need to write them

‣ (require racket/stream)

‣ (stream exp ...) ; Works like (list exp ...)

‣ (stream? v)

‣ (stream-cons head tail)

‣ (stream-first s)

‣ (stream-rest s)

‣ (stream-empty? s)

‣ empty-stream

‣ (stream-ref s idx)

And several others

Let's write some Racket!

Open up a new file in DrRacket

Make sure the top of the file contains

#lang racket

(require racket/stream)

Write the procedure (stream-length s) which returns the length of a finite

stream

I.e., (stream-length (stream 1 2 3 4 5)) returns 5

Use stream-empty? and stream-rest

Write more stream procedures

Write the procedure (stream->list s) that takes a finite-length stream and

returns the elements as a list

Write the following procedures that act like their list counterparts, but operate

lazily on streams; in particular, do not covert them to lists!

‣ (stream-take s num)  

Returns a stream containing the first num elements of s, make sure this is lazy

‣ (stream-drop s num)  

Returns a stream containing all of the elements of s in order except for the first

num

‣ (stream-filter f s)  
Returns a stream containing the elements x of s for which (f x) returns true

‣ (stream-map f s)  
Returns a stream by mapping f over each element of s

Multi-argument stream-map
(stream-map f s ...)

Racket has stream-map built-in but unlike its list counterparts, it only takes a

single stream

Generalize it to take any number of streams where the length of the returned

string is the minimum length of any of the stream arguments (i.e., return empty-

stream if any of the streams becomes empty); you'll want to use ormap, map

and apply

‣ (define (stream-map f . ss) …)

